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Società Italiana di Fisica
Springer-Verlag 2000

Non-linear reciprocity in extended thermodynamics
from the Robertson formalism

R.E. Nettletona

Department of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa

Received 13 September 1999 and Received in final form 4 April 2000

Abstract. Robertson has found a projection operator which, applied to the Liouville equation, yields an
exact equation for σ(x, t), the information-theoretic phase-space distribution. If the Robertson equation is
multiplied by a set {F̂i} of functions representing physical fluxes, odd under momentum reversal and even
under configuration inversion, a set of evolution equations is obtained for time-dependent ensemble averages
ηi = 〈F̂i〉 which are variables of extended thermodynamics. In earlier work, a perturbation calculation was
developed, assuming just one variable η, for an operator T̂ occurring in the Robertson equation. This
calculation is extended here to the case where there are ν > 1 variables. The coefficients in the evolution
equations depend on {ηj} and explicitly on time t at short times. It is shown here that these coefficients
exhibit Onsager symmetry at long times, after the transient explicit t-dependence has disappeared, to
O(η3).

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.20.Jj Statistical mechanics
of classical fluids – 05.60.Cd Classical transport

1 Introduction

Robertson [1] has obtained an exact statistical deriva-
tion of non-equilibrium thermodynamics from the Liou-
ville equation. If the latter is satisfied by the phase-space
distribution ρ(x, t), one can find an operator, P̂R, such
that P̂Rρ̇ = σ̇, where σ(x, t) is the information-theoretic
distribution [2].

σ(x, t) = Z−1 exp

[
−βĤ −

ν∑
i=1

λiF̂i(x)

]
(1)

which maximizes the information-theoretic entropy sub-
ject to matching conditions for the set {η̇i} of thermody-
namic state variables:

ηi = 〈F̂i〉 =
∫
σ(x, t)F̂i(x)dx (1 5 i 5 ν) (2)

where we integrate over phase space. The set {λi} are de-
termined to satisfy (2) identically. β = (kT )−1 character-
izes a heat reservoir with which the system is in thermal
equilibrium, although it will not be in internal equilibrium
unless the {λi} vanish. Z is a normalizing factor. By op-
erating on the Liouville equation with P̂R, one obtains an
exact equation for ∂σ/∂t, with σ given by (1). Multiply-
ing this equation by the functions {F̂i(x)} and integrating
over phase space, one gets exact evolution equations for
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the set {η̇i} in the form of a sum of powers of the {λi}.
As we shall see, these evolution equations can be cast in
the form

η̇i =
ν∑
j=1

Lij({λp}, t)λj(t) (1 5 i 5 ν). (3)

In a non-uniform system, the kinetic equations such
as (3) are taken together with the hydrodynamic equations
of energy, mass and momentum conservation to constitute
“generalized hydrodynamic equations”. Here the system is
uniform and the particle number fixed. To conclude that
T is fixed, we invoke the conventional definition of “heat
bath” which is a system large enough so that its temper-
ature is constant which exerts vanishingly-small forces on
the molecules of the system with which it interacts. These
forces induce an exchange of energy and momentum be-
tween system and heat bath at an unobservably slow rate
during relaxation of the variables {ηi}. The observed re-
laxation process therefore occurs with energy and centre-
of-mass effectively fixed. The extremely weak interaction
with the heat bath does not perturb the system dynamics,
permitting us to use the Liouville equation which applies
to a system of fixed size and neglects interactions with
the surroundings. Accordingly, for a system interacting
with such a bath, the hydrodynamic equations trivially
equate to zero the rates-of-change of densities of conserved
quantities momentum and energy. In thermodynamics, in
both equilibrium and non-equilibrium, temperature is op-
erationally defined [3,4] as the reading of a thermometer
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with which the system is observed to be in thermal equi-
librium or, failing this, by some other empirical procedure.
Here, the heat bath plays the role of a thermometer, and
the temperature of the system is the constant tempera-
ture T of the bath. The probability that during a given
observation of relaxation of the set {ηi} the energy is E
is then proportional to exp (−βE) with β = (kT )−1. In
a situation where a system is not in thermal equilibrium
with a thermometer, e.g. a sound wave where T varies
sinusoidally, the time-dependence of T is still inferred ex-
perimentally by comparing with absorption and disper-
sion measurements the result of postulating a sinusoidal
time-dependence of T . Since T is fixed and the conserva-
tion equations trivial, equations (3) suffice to describe the
observed relaxation of the system.

Equations (3) are phenomenological equations of non-
equilibrium thermodynamics, relating fluxes η̇i to ther-
modynamics forces. One can see that the {λi} are propor-
tional to thermodynamic forces by inserting (1) into the
information-theoretic entropy [2],

S = −k
∫
σ lnσ dx. (4)

The result obeys a Gibbs equation,

TdS = dE +
∑
i

λiβ
−1dηi (5)

so that λjβ−1 is the thermodynamic force associated with
the flux η̇i. Work terms or a term proportional to the
chemical potential are absent because the system bound-
aries are fixed as is particle number N . Driving terms,
proportional e.g. to a macroscopic temperature gradient
are absent in (3) because the system is uniform.

If a driving force such as −LqT−1∇T is added to (3)
when ηi is component of Q = heat flux, positive defi-
niteness of the irreversible entropy production calculated
from (5) requires that (2) be written

Q = −V −1Lqβ
−1λq + · · · (6)

where the ellipsis refers to terms proportional to other
forces. There is thus an anti-symmetric Onsager coupling
between the driving forces and the rates {η̇i}. This assures
that if only low-frequency disturbances are propagating,
so that the {η̇i} can be neglected, equations (3) reduce
to the classical phenomenological equations for coupled
fluxes of e.g. heat and diffusion [5]. If Lij = Lji obtains
in (3), reciprocity will still obtain in the classical limit
when the {η̇i} can be neglected. Reference [6] gives a his-
tory of applications of reciprocity in extended thermody-
namics. (See pp. 225–233.) Extended thermodynamics, in
which the dissipative fluxes of classical non-equilibrium
thermodynamics appear as variables, reduces to the clas-
sical formalism in the low-frequency limit in such a way
that Onsager symmetry is preserved, assuming the classi-
cal form [6,7] with a new set of coefficients L′ij.

We shall suppose in what follows that the variables
{ηi} are indeed the dissipative fluxes of classical non-
equilibrium thermodynamics [7], e.g. components of Q or

of the diffusion flow, and, accordingly, that the {F̂i} are
odd under reversal of particle momenta. The original rea-
son [6] for introducing these variables is that reciprocity
relations among the {Lij} can relate quantities suscep-
tible of calculation from molecular models to others less
readily calculable from models. In a steady state induced
by constant driving forces, if reciprocity can be used in
calculating the λ-dependence of the {Lij}, we can predict
non-linear effects in transport when the rate equations are
solved for the {ηi} in terms of the driving forces. There
are a number of recent examples [8–11] of the use of ex-
tended thermodynamics to estimate non-linear effects in
transport and chemical reactions. The emphasis in these
works on reciprocity and molecular models diverges from
the main stream in this field [12] which has been con-
cerned more with the derivation of wave equations whose
parameters can be fitted to experiment.

Our aim in the present paper is to determine condi-
tions under which Lij = Lji in (3) when the λ-dependence
of these coefficients is taken into account. For simplic-
ity, all the {ηi} are taken to be odd under time-reversal
and the {F̂i} odd under reversal of particle momenta.
Robertson [1] was unable to prove reciprocity when the
Lij depend on the {λp}. A specialization of his work [13]
to equations having a structure typical of extended ther-
modynamics [6,12] including variables both odd and
even under time-reversal, showed that symmetric reci-
procity holds in general only if we neglect O(λp) in the
Lij-coefficients coupling forces of the same parity, whilst
anti-reciprocity holds to all orders in coefficients coupling
forces of opposite parity under time-reversal. We consider
here the Robertson formalism for terms in rate equations
such as (3) which exhibit symmetric reciprocity in linear
approximation to see whether at later times reciprocity-
violating contributions to the {Lij} do not disappear.
Typically Q in a simple liquid will relax in less than a
nanosecond over which we do not actually make obser-
vations, and so non-linear reciprocity will be seen to hold
over time scales of actual measurements and in the steady-
state limit.

Physical examples of operators {F̂i} have been given
previously for heat flux [14], diffusion [15], and inelastic
strain-rate [9]. These are discussed in the references cited,
showing how the rates-of-change of the variables may be
cast in the form (3). In a non-uniform system, they are
coupled to gradients in such a way that they reduce to e.g.
Fourier’s law in the classical limit. In all these examples,
F̂i is even under configuration inversion, and so all our
{F̂i} will have this property, as well as being odd under
particle momentum reversal.

We proceed to summarize the derivation of (3). Defin-
ing [1] P̂R by

P̂R χ =
ν∑
j=1

(∂σ/∂ηj)
∫
F̂j χdx (7)
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for arbitrary χ(x), we find [13] that the equation for σ̇
assumes the form:

σ̇(t) = −iP̂R(t)Lσ(t) +
∫ t

0

dt′P̂R(t′) iL̂T̂ (t, t′)

× [1− P̂R(t′)] iL̂σ(t′) (8)

where L̂ is the Liouville operator. T̂ (t, t′) is defined [1] to
be the solution of

∂T̂ (t, t′)/∂t′ = T (t, t′)[1− P̂R(t′)] iL̂ (9)

with T (t, t) = 1. Multiplying (8) by F̂i(x) and integrating
over phase-space, we obtain [13]:

∂ηi/∂t = −
∫ t

0

dt′
∫

dx iL̂F̂i{∂T̂ (t, t′)/∂t′}σ(t′)

(1 5 i 5 ν). (10)

The first term on the right in (8) gives zero because the
{F̂i} are even under configuration inversion, causing the
integrand in (7), viz. F̂j iL̂σ, to be odd.

Equation (8) belongs to a family of exact equations
derivable [16] by projection operators from the Liouville
equation. The P̂R have been so defined that the informa-
tion theoretic σ, provided the {ηi} are solutions of (10),
is an exact solution of (8). In addition, ηi satisfies the
result of replacing σ → ρ in (2). We thus have an exact
closed set of phenomenological equations. The variables T ,
ηi chosen for the set should include all those whose values
can be extracted from data to be analysed [16]. Alterna-
tive approaches, e.g. the one based on Zwanzig-Grabert
projection operators [17], yield an equation for a distribu-
tion which would give the same set of {ηi} exactly if we
could find an exact solution to the equation corresponding
to (8), a solution dependent on the moments. In general,
to use such an equation, one needs a closure approxima-
tion in the form of an ansatz which, in some cases [18] has
been calculated from σ(x, t) Since non-linear effects are
small, one can then not be sure that any predictions are
not artifacts of the closure approximation. Since σ(x, t)
solves exactly equation (8), its use in closure is not an
approximation.

In order to investigate reciprocity, we seek to expand
the right-hand member of (10) in powers of the {λi} which
correspond to thermodynamic forces [13]. If only linear
terms are kept, previous work [1,13] has shown that we
extract (3) with Lij = Lji. Apparently [13] the higher
terms in the expansion cannot be regrouped to preserve
reciprocity when Lij is λ-dependent, but we want explicit
expressions for these terms to see whether non-linear reci-
procity does not hold approximately or become valid un-
der suitable conditions, e.g. at long times.

The perturbation expansion of (10) in powers of the
{λj} is effected by expanding ∂T̂/∂t′ and σ with ∂T̂n/∂t′,
σn, and P̂

(n)
R the respective contributions which are

O(λn). thus, from (6):

∂T̂n(t, t′)/∂t′ =
n∑
k=0

T̂n−k(t, t′)
[
δk0 − P̂ (k)

R (t′)
]

iL̂. (11)

These equations can be solved successively [19], starting
with

T̂±0 (t− t′) = exp [∓i(t− t′){1− P̂ (0)
R }iL̂] (12)

as we show in the following section. The higher-order P̂ (k)
R

are found by substituting the λ-expansions of ∂λk/∂ηj ,
and σ into (7). Once the λ-expansions of the operators
have been obtained, we have:

{∂ηi/∂t}(k) = −
∫ t

0

dt′
∫

dx iL̂F̂i

×
k−1∑
j=0

{∂T̂ (t, t′)/∂t′}(j)σk−j(t′). (13)

By carrying out the procedures sketched above to eval-
uate (13) for k = 1, 2, 3, we can consider whether the
non-linear terms on the right can be regrouped to exhibit
symmetric reciprocity, particularly in the long-time limit.

The perturbation solution of (11) has been developed
in detail [19] for the case ν = 1 where there is just one vari-
able. In the following section we shall summarize the ex-
tension to ν > 1 and give explicit expressions for ∂T̂k/∂t′
for 1 5 k 5 3. This permits investigation of the O(λ3)
terms in (10) which are the lowest order non-linear con-
tributions and the lowest order [13] in which we may find
violations of reciprocity. In Section 3, we examine in detail
the right-hand member of (13) for k = 1, 2, showing that
it vanishes for k = 2 and exhibits reciprocity for k = 1.
In Section 4, we examine several O(λ3) contributions to
∂ηi/∂t. These involve integrals of time correlations of the
{F̂i} which have a transient explicit time-dependence, i.e.
in addition to their dependence on λ(t), at short times.
At times exceeding the relaxation times of fast variables,
and therefore on the time scale of actual measurements,
the transient t-dependence will disappear, and reciprocity
will apply. In Section 5, a summary and discussion will be
given. A comparison is made there with earlier approxi-
mate calculations which use different projection operators.

2 Perturbation calculation of the operator
T̂(t, t0)

The leading term in the λ-expansion of T̂ , as given by
Robertson [1] is T̂+

0 (t̄) with t̄ ≡ t−t′, as given in (12). Eval-
uation of the integral obtained by substituting T̂0 into (10)
has been given earlier [20]. To consider higher terms T̂k in
the λ-expansion of (9), we need σk and P̂

(k)
R . A straight-

forward expansion of (1) yields, with ρc(x) the equilibrium
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canonical distribution:

σ0 = ρc (14a)
σ1 = −ρcΛ (14b)

σ2 =
1
2
ρc(Λ2 − 〈Λ2〉0) (14c)

σ3 = −(1/6)ρcΛ
3 +

1
2
ρc〈Λ2〉0Λ (14d)

Λ ≡
∑
i

λiF̂i. (14e)

The subscript zero on an angular bracket denotes an equi-
librium canonical average calculated using ρc, and σk is
O(λk).

Since the {λi} depend on {ηj}, we can expand λi in
powers of the η-variables and then invert to obtain η

(k)
j ,

the O(λk) term in the inverted expansion. This can be
used to obtain λ

(p)
kj , the O(λp) term in the expansion of

λkj ≡ ∂λk/∂ηj. This is done for p = 2 in Section 4. With
this notation, we obtain from (4), for arbitrary integrable
phase function χ(x):

P̂
(0)
R χ = −ρc

ν∑
j=1

ν∑
k=1

λ
(0)
kj F̂k

∫
F̂jχdx (15a)

P̂
(1)
R χ =

∑
j,k

{−σ1λ
(0)
kj F̂k + ρcλ

(0)
kj η

(1)
k }

∫
F̂jχdx (15b)

P̂
(2)
R χ =

∑
j,k

{−σ2λ
(0)
kj F̂k + σ1λ

(0)
kj η

(1)
k

− ρcλ
(2)
kj F̂k}

∫
F̂jχdx. (15c)

With these results, we can seek a solution of (11) in the
form [19]:

T̂n(t, t′) =
n∑
k=1

θ̂k(t, t′)T̂n−k(t, t′) (n = 1). (16)

Substitution from (16) into (11) yields a family of
equations which may be solved successively for θ̂1, θ̂2, . . .
subject to θ̂0 = 1 and θ̂j(t, t′) = 0 for j > 0. The solu-
tions [19] take the form:

θ̂1(t, t′) =
∫ t

t′
T̂0(t, t′)P̂ (1)

R (t1)iLT̂−1
0 (t, t1)dt1 (17a)

θ̂2(t, t′) =
∫ t

t′
dt1 T̂0(t, t1)

[
P

(2)
R (t1)iL̂T̂−1

0 (t, t1)

−P̂ (1)
R (t1)iL̂T̂−1

0 (t, t1)θ̂1(t, t1)
]
. (17b)

Substitution of (17a, b) into (16) yields T̂1 and T̂2. These,
in conjunction with (10), give ∂T̂1/∂t

′ and ∂T̂2/∂t
′. We

do not need ∂T̂3/∂t
′ which does not appear in (13) when

k = 3. Its absence in (13) stems from the fact that
iL̂σ0 = 0. Therefore, we do not evaluate θ̂3.

3 Linear and quadratic terms in the evolution
equation

Equations (12, 16), and (17a, b) give us T̂0, T̂1, and T̂2

which, with (11), permit us to expand ∂ηi/∂t in (10) to
O(λ3). The O(λ) term in (10) is, from (13) with k = 1:

{∂ηi/∂t}(1) =−
∫ t

0

dt
∫

dx iL̂F̂i{∂T̂0(t, t′)/∂t′}σ1(t′)≡I1.
(18)

There is no additional term involving (∂T̂1/∂t
′)σ0, since

this is proportional to iL̂σ0 = 0. Introducing σ1 from (14b)
and Λ from (14c), we have:

I1 =
∫ t

0

dt′
∫

dx iL̂F̂iρc(∂T̂0/∂t
′)
∑
j

F̂jλj(t′). (19)

ρc commutes with L̂ and with P̂
(0)
R , in the latter case be-

cause the average of F̂j is zero in equilibrium.
The evaluation of I1 in (19) has been discussed at

length in earlier work [20] which we summarize here. The
term involving P̂ (0)

R in the square racket in (11) vanishes
when we substitute from (11) into (19) because this term
is proportional to integrals of the type

∫
F̂i iL̂F̂j dx whose

integrands are odd under momentum reversal. We are left
with:

I1 =
∫ t

0

dt′
∫

dx iL̂F̂iρcT̂0(t, t′)iL̂
∑
j

F̂jλj(t′). (20)

To simplify the calculation without loss of generality,
we shall choose the operators {F̂j} to be the particu-
lar set {F̃j(x)} which diagonalize the O(λ2) terms in the
λ-expansion of the Helmholtz free energy, Φ. When the
{F̃j} are used, all related quantities will have a tilde. We
have

Φ = −(2β)−1
∑
i,j

λ
(0)
i,j ηiηj (21a)

−(λ(0))−1
ij = 〈F̂iF̂j〉0 (21b)

F̃i ≡
∑
i,j

Γij F̂j (21c)

η̃i =
∑
j

Γijj. (21d)

The matrix Γij diagonalizes λ(0)
ij so that, by (21b),

ν̃ij ≡ 〈F̃iF̃j〉0 = 0 (i 6= j) (22a)

〈Λ̃2〉0 =
∑
i,j

ν̃ij λ̃iλ̃j . (22b)

We shall use the model

C̃ij(t) ≡ 〈F̃i exp (−iL̂t)F̃j〉0 = ν̃ij exp (−γit)δij . (23)
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The exponentially relaxing model for C̃ij(t) agrees [19]
with the Onsager fluctuation-regression hypothesis. It
does not give correctly limt→0∂C̃ij/∂t in accord [19] with
a widely perceived picture which requires a very short time
before phenomenological irreversible thermodynamics can
take over. In a dense fluid, C̃ij(t) can be evaluated via
molecular dynamics. However, for analytical investigation
of the t-dependence of I1, we need [19] a model which
is equivalent to specifying a mechanism for breaking the
time-reversal symmetry. The diagonal character of (23)
facilitates expression of the Fourier transform of (20) as
a summable power series, as we shall demonstrate.

With the foregoing notation and the model (23), one
can use an operator identity [20] to expand T̂0(t̄) in the
operators iP (0)

R L̂, so that we get

ζ̂(t) ≡ 〈iL̂F̃iT̂0(t̄)iF̃j〉0 = 〈iL̂F̃i exp (−iL̂t)iL̂F̃j〉0

+ 〈iL̂F̃j
∫ t̄

0

dξ exp (−iL̂ξ)iP̂ (0)
R L̂

× exp {−iL̂(t̄− ξ)}iL̂F̃j〉0 + . . . (24)

Each term in the right-hand member of (24) is a convo-
luted product of time integrations. This causes the Fourier
transform of ζ̂(t) to be proportional to a geometric series
in powers of

η̄ii ≡ (1/ν̃ii)
∫ ∞

0

eiωt{∂C̃ii(t)/∂t}dt

= −(1/ν̃ii){ν̃ii + iωC̃ii(ω)} (25)

where we have used the model (23). The model gives us
a sum of powers of η̄ii rather than powers of a matrix.
Summing the geometric series, we get for ζ(ω), the Fourier
transform of ζ̂(t) [19,20]:

ζ(ω) = iων̃iiη̄ii(ω)/{1 + η̄ii(ω)}δij = ν̃iiγiδij . (26)

On taking the inverse transform of ζ(ω), we get:

(2π)−1

∫ ∞
−∞

ζ(ω)e−iωt̄dω = ν̃iiγiδ(t̄)δij (27a)

{∂ηi/∂t}(1) = I1 =
∫ t+

0

ν̃iiγiδ(t− t′)λ̃i(t′)dt′ (27b)

= ν̃iiγiλ̃i(t). (27c)

The upper integration limit in (27b) is chosen because
it leads to the expected physical result that γi is the
relaxation frequency of η̃i, in accord with the Onsager
fluctuation-regression hypothesis [20], as we proceed to
show. A different choice of upper limit would produce an
unphysical result.

From the matching condition (2), we have

λ̃i = −(ν̃ii)−1η̃i +O(η̃3), (28)

and so

{∂η̃i/∂t}(1) = I1 = −γiη̃i +O(η̃3) (29)

where O(η̃3) provides for the fact that a term linear in λ̃
can be non-linear in η̃. (29) shows that η̃i has the same
relaxation time as C̃ii(t).

Since I1 is diagonal, ∂η̃i/∂t (1 5 i 5 ν) from (27)
obviously exhibits Onsager reciprocity to terms linear in
the {λ̃i}. We have (cf. (21c):∑

i

λ̃iF̃i =
∑
i

λiF̃i (30a)

λ̃i =
∑
i

Γ−1
ij λj (30b)

where Γij is symmetric because it diagonalizes the sym-
metric matrix λ(0)

ij . To transform (27b) into the equation
relating ∂ηi/∂t to the set {λi}, we multiply −γiδij from
the right and left by Γ−1, obtaining a symmetric matrix
of linear phenomenological coefficients. This conclusion
agrees with earlier results [1,13] which found that the phe-
nomenological equations for {∂ηi/∂t} exhibit symmetric
Onsager reciprocity to terms linear in the forces {λj}.

We have still to consider {∂ηi/∂t}(2) which, from (13)
obeys:

{∂ηi/∂t}(2) = −
∫ t

0

dt′
∫

dx iL̂F̂i{(∂T̂1/∂t
′)σ1(t′)

+ (∂T̂0/∂t
′)σ2(t′)} (31)

where from (11):

∂T̂1/∂t
′ = T̂1(t, t′)[1− P̂ (0)

R (t′)]iL̂− T̂0(t, t′)P̂ (1)
R iL̂. (32)

Consider

P̂
(1)
R iL̂σ1 = −P̂ (1)

R iL̂

(
ρc

∑
k

λkF̂k

)
. (33)

This is a sum of terms, each proportional to an integral of
the type ∫

F̂w iL̂(ρcF̂k)dx = 0 (34)

which vanish because the integrand is odd under momen-
tum reversal. The integral in the contribution to (31)
which involves ∂T̂1/∂t

′ reduces to∫
dx iL̂F̂iθ̂1(t, t′){∂T̂0(t, t′)/∂t′}σ1(t′)

=
∫

dx iL̂F̂i
∫ t

t′
T̂0(t, t′)P̂ (1)

R (t1) · · · (35)

From (14b), we see that the factors multiplying the in-
tegrals

∫
F̂jχdx in P̂

(1)
R are even in the {F̂j}. As shown

in (24), T̂0 can be expanded in the operators iP̂ (0)
R L̂. When

this operates on P̂
(1)
R · · · , we get integrals involving odd

powers of the {F̂i} which vanish unless there occur in the
same integrals odd numbers of L̂-operators. These are odd
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under configuration inversion, and so the integral in (35)
is zero. We are left with

{∂ηi/∂t}(2) = −
∫ t

0

dt′
∫

dx iL̂F̂i{∂T̂0/∂t
′}σ2(t′). (36)

From (14c), σ2 is even in the {F̂j}. Thus P̂ (0)
R iL̂σ2 = 0

because it is proportional to integrals of the type∫
F̂i iL̂σ2dx = 0. We are left in (36) with an integral hav-

ing the same structure as the one discussed in (35) which
vanishes for the same reason. Accordingly,

{∂ηi/∂t}(2) = 0. (37)

In deriving (37) we have shown that if Lik in (3) is ex-
panded in powers of the λj with L

(p)
ik the O(λp) term,

then L
(0)
ik = L

(0)
ki = const., whilst L(1)

ik = 0. L(0)
ik exhibits

no explicit dependence on t, and so p = 2 denotes the
lowest order in which such a t-dependence will appear.

4 Cubic terms and explicit time-dependence

Having examined the O(λ) terms in (10) and shown
that L

(0)
ik = L

(0)
ki , we proceed to calculate {∂ηi/∂t}(3)

from (13). We shall find, in agreement with [1] and [13],
that L(2)

ik 6= L
(2)
ki at short times. However, the initial ex-

plicit time-dependence of L(2)
ik disappears at times greater

than the relaxation times of fast variables. At t→∞, the
terms in {∂ηi/∂t}(3) can be grouped in such a way that
L

(2)
ik exhibits symmetric reciprocity in this limit.

From (13), we have:

{∂ηi/∂t}(3) = −
∫ t

0

dt′
∫

dx iL̂F̂i{(∂T̂0/∂t
′)}σ3(t′)

+ (∂T̂1/∂t
′)σ2(t′) + (∂T̂2/∂t

′)σ1(t′)} ·
(38)

The curly bracket has no term proportional to σ0(t′) be-
cause ∂T̂k/∂t = (· · · )iL̂ and iL̂σ0 = 0. Designating by
I3k (0 5 k 5 2) the integral in (38) involving ∂T̂k/∂t′, we
shall take up each of these three integrals in turn.

Substituting for σ3 from (14d) into (38), we let I30p be
the term in I30 whose integrand is proportional to Λp, so
that I30 = I301 + I303. We see immediately that

I301 = −1
2
〈Λ2〉0 I1 (39)

where I1 has been evaluated in (29). We have seen that
I1 can be expressed to O(λ) as a sum of terms whose
coefficients exhibit symmetric reciprocity which continues
to hold if we multiply I1 by 〈Λ2〉0. The remaining term in

I30 is:

I303 = (1/6)
∫ t

0

dt′
∫

dx iL̂F̂i(∂T̂0/∂t
′)Λ3ρc

= (1/6)
∑
pjk

∫ t

0

dt′
∫

dx iL̂F̂iT̂0 iL̂F̂pF̂jF̂k

× ρcλp(t′)λj(t′)λk(t′)

= −(1/6)
∑
pjk

∫ t

0

dt′(∂2/∂t̄ 2)Cipjk3 (t̄)

× λp(t′)λj(t′)λk(t′) + · · · (40a)

Cipjk3 (t) ≡ 〈F̂i exp (−iL̂t)F̂pF̂jF̂k〉0. (40b)

The ellipsis in (40a) represents higher terms in the ex-
pansion of T̂0 which has previously been used in (24).
The contribution of these higher terms not given explicitly
in (40a) can be evaluated by Fourier transformation in the
manner illustrated in (24–26). Once again we can work in
terms of the set {F̃j} and cast the Fourier transform of
the integrand in (40a) in the form:

ζ̄(ω) ≡ −
∫ ∞

0

eiωt(∂2/∂t̄ 2)C̃ipjk3 (t̄)dt̄

×
[
1− η̄ii(ω) + η̄2 − · · ·

]
= −

∫ ∞
0

eiωt(∂/∂t̄)C̃ipjk3 (γi − iω)dt̄ (41)

where C̃ipjk3 is obtained by putting F̂j → F̃j in (40b). On
inverting the transform, we get:

(2π)−1

∫ ∞
−∞

ζ̄(ω) {exp (−iωt̄)}dω = −γi∂C̃ipjk3 (t̄)/∂t̄

+ ∂2C̃ipjk3 /∂t̄ 2. (42)

Using the result (42) for the integrand in (40a), we have:

I303 = (1/6)
∑
pjk

∫ t

0

dt′
[
−γi∂C̃ipjk3 (t̄)/∂t̄

+∂2C̃ipjk3 /∂t̄ 2
]
λ̃p(t′)λ̃j(t′)λ̃k(t′). (43)

C̃ipjk3 (t̄) is invariant under a change of sign of t̄ because the
odd powers of t̄ involve odd powers of L̂ so that the phase-
space integration of these terms gives zero. Therefore, the
first term in the square bracket changes sign under t̄→ −t̄,
and so the coefficient relating η̇i(t) to λj(t′) will not have
Onsager symmetry as defined in previous work [1,13] and
seen in the terms linear in the {λj}. If we let t→∞ and
set λ̃p(t′) = λ̃p(t − t̄), we can replace λ̃p(t − t̄) → λ̃p(t)
on the assumption that C3(t̄) rapidly approaches zero as
t̄ increases. Large t̄ makes a negligible contribution to the
integral in (43). Then

I303 −−−→
t→∞

(1/6)γi
∑
pjk

C̃ipjk3 (0)λ̃p(t)λ̃j(t)λ̃k(t). (44)
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C̃ipjk3 (0) = 〈F̃iF̃pF̃j F̃k〉0 is symmetric under permutation
of any pair of indices. If we regroup the terms in (44), we
can set:

I303 =
∑
k

L̃
(2,303)
ik λ̃k (45a)

L̃
(2,303)
ik = (1/6)(γi + γk)

∑
p,j

C̃ipjk3 (0)λ̃pλ̃j

− (1/6)
∑
p,j

C̃ipjk3 γpγj . (45b)

Then L̃
(2,303)
ik = L̃

(2,303)
ki . Using the transformation (21d)

together with (30b), we continue to get Onsager symmetry
in the I30 contribution to the matrix L

(2)
ik relating η̇i to

the set {λj} (with no tilde over the symbols).
Next we take up the contribution to L

(2)
ik from the

terms proportional to ∂T̂1/∂t
′ in the integrand of (38).

Substituting from (14c), we put these contributions in the
form:

I31 = −1
2

∫ t

0

dt′
∫

dx iL̂F̂i(∂T1/∂t̄′)(Λ2 − 〈Λ2〉0)ρc

= I310 + I312. (46)

Again, the integrand in I31p is proportional to Λp.
From (11), ∂T̂1/∂t

′ = (· · · )iL̂ and iL̂ρc = 0. Thus

I310 = 0. (47)

In the calculation of I312, it is seen that ∂T̂1/∂t
′ involves

operators proportional to P (0)
R iL̂ and P (1)

R iL̂. Since these,
in operating on Λ2ρc, yield factors of the type∫

F̂j iL̂Λ2ρcdx = 0, (48)

which vanish because the integrand is odd under
configuration-space inversion, we are left with:

I312 = −1
2

∫ t

0

dt′
∫

dx iL̂F̂iθ̂1(t, t′)T̂0(t, t′){Λ(t′)}2ρc.

(49)

Using (17a) for θ̂1 and the expansion for T̂0 introduced
in (24), we find that all the terms in (49) have factors
whose integrands are odd in either configuration or mo-
mentum space. Therefore,

I312 = 0. (50)

The third and final contribution in (38), when we sub-
stitute for σ1 from (14b), takes the form:

I32 =
∫ t

0

dt′
∫

dx iL̂F̂i(∂T̂2/∂t
′)Λρc. (51)

Terms in ∂T̂2/∂t
′ proportional to P̂

(k)
R iL̂ yield integrals

with one L̂-operator which vanish for the same reason as

does the integral in (48). Thus

I32 =
∫ t

0

dt′
∫

dx iL̂F̂iT̂2(t, t′)iL̂Λρc

=
∑
j

∫ t

0

dt′λj(t′)
∫

dx iL̂F̂iθ2(t, t′)T̂0(t, t′)iL̂F̂jρc.

(52)

The term θ̂1T̂1 in T̂2 gives zero because it involves inte-
grals of the type which cause the vanishing of I31. Refer-
ring to (17b) for θ̂2, we find that the term in θ̂2 involving
θ̂1 vanishes for the same reason as the term θ̂1T̂1 in T̂2,
and so

I32 =
∑
j

∫ t

0

dt′λj(t′)
∫

dx iL̂F̂i
∫ t

t′
dt1T̂0(t, t1)

× P (2)
R (t1)i L̂T̂0(t1, t′) iL̂F̂jρc. (53)

Into (53), we put P (2)
R from (15c). This expression involves

η
(1)
k and λ(2)

kj which satisfy (cf. 14b, 22a and 28):∑
k

λ
(0)
kj η

(1)
k = λj (54a)

λ
(2)
jk = −1

2
λ

(0)
jk

∑
r,w

(λ(0)
rw)−1λrλw − λjλk

+
1
2

∑
mprw

λ
(0)
jmC

mprw
3 (0)λrλpλ

(0)
wk. (54b)

These equations will continue to hold if we add a tilde to
each symbol.

We proceed to collect the various contributions to I32

stemming from terms in P (2)
R . Denoting by I32(p) a contri-

bution from the term in σp in the curly bracket of (15c),
we have, after introducing the set {F̃j} and using Fourier
transformations as is done in (24–27b), four contributions
to I32:

I32(0) =
∑
j

∫ t

0

dt̄λ̃j(t− t̄)
∫

dx iL̂F̂iT̂0(t̄)

×
∑
k

λ̃
(2)
kj (t− t̄)F̃kν̃jjγj

= −
∑
j

∫ t

0

dt̄λ̃j(t− t̄)ν̃iiν̃jjγiγj λ̃(2)
ij (t− t̄) (55a)

I32(1) =
∑
j

∫ t

0

dt̄λ̃j(t− t̄)
∫

dx iL̂F̂iT̂0(t̄)

×
∑
p

F̃pλ̃pρc
∑
r

λ̃
(0)
jr ν̃rrγrλrδrj

= −
∑
j

∫ t

0

dt̄λ̃(2)
j (t− t̄)ν̃iiν̃jjγiγj λ̃i(t− t̄) (55b)
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I
(0)
32(2) =

1
2

∑
j

∫ t

0

λ̃j(t− t̄)dt̄
∫

dx iL̂F̂iT̂0(t̄)〈Λ2〉0,t−t̄

×
∑
k,j

λ̃
(0)
kj F̃k ν̃jjγj

= −1
2

∫ t

0

λ̃j(t− t̄)dt̄
∑
j

ν̃jj λ̃
2
j (t− t̄)ν̃iiγ2

i (55c)

I
(2)
32(2) =

1
2

∑
j

∫ t

0

dt̄ λ̃j(t− t̄)
∫

dx iL̂F̂iT̂0(t̄)
∑
k,r

λ̃k(t− t̄)

× λ̃r(t− t̄)F̃kF̃rρc

∑
w

F̃wλ̃
(0)
wj ν̃jj γ̃j

= −1
2

∑
j

∫ t

0

dt̄λ̃j(t− t̄)
∑
k,r

λ̃k(t− t̄)λ̃r(t− t̄)γ̃j

×
[
(∂/∂t̄)C̃ikrj3 (t̄)− γiC̃ikrj3 (0) + γiC̃

ikrj
3 (t̄)

]
.

(55d)

Here I(k)
32(2), with i = 0, 2, represent, respectively, contri-

butions from the 0(Λ̃k) terms in σ2.
Inspection of (55b, c) shows that in a steady state

where external forces not included in (8) and (10) cause
the set {λ̃j(t)} to become constant as t → ∞, the time
integrals in (55b, c) will exhibit a secular divergence in
this limit. However, if we substitute from (54b) for λ̃(2)

ij

in (55a), the terms exhibiting secular divergences are
found mutually to cancel on addition of (55a-d). After
the addition, we are left with the result:

I32 = −1
2

∑
jpr

∫ t

0

dt̄ λ̃j(t− t̄)λ̃r(t− t̄)λ̃p(t− t̄)γj

× {(∂/∂t̄)C̃ijpr3 (t̄) + γiC̃
ijpr
3 (t̄)} · (56)

Remembering that t̄ = t − t′, we see, as in (43) that the
derivative (∂/∂t̄)C̃ijpr3 (t̄), which changes sign under t̄ →
−t̄, spoils the Onsager symmetry of the coefficient relating
˙̃ηi(t) to λ̃r(t′). As t → ∞, since C̃ijpr3 (t̄) is assumed to
decrease rapidly with increasing t̄, we can replace λ̃j(t −
t̄)→ λ̃j(t). Then

I32 −−−→
t→∞

∑
jpr

1
2
γj

[
C̃ijpr3 (0)− γi

∫ ∞
0

C̃ijpr3 (t̄)dt̄
]

× λ̃j(t)λ̃p(t)λ̃r(t). (57)

C̃ijpr3 (0) is symmetric with respect to permutation of any
pair of indices. We can interchange r ↔ j, causing the
contribution of this term to the coefficient multiplying γj
on the right to have i↔ j symmetry. The remaining terms

in (57) can be regrouped, giving:

I32 = −1
2

∑
jpr

[
γrC̃

irpj
3 (0)− γr

∫ ∞
0

(γiC̃
ijpr
3 (t)

+ γjC̃
jipr
3 (t))dt + γpγr

∫ ∞
0

C̃ripj3 (t)dt

× λ̃j λ̃pλ̃r
]
(t→∞) (58)

where the terms have been re-arranged in a manner re-
sembling (45b), followed by the interchange j ↔ r in the
first integral on the right and j ↔ p in the second integral.

If we pull out λ̃j in (58), the coefficient of this factor
has i ↔ j symmetry which is retained if we use (21c).
Taking into account (39, 44, 47, 50) and (58), we get after
adding all these contributions to I3,

L
(2)
ik = L

(2)
ki (t→∞). (59)

Thus the non-linear Onsager symmetry, which is violated
at short t in (56), holds at times greater than the time for
C̃ijpr3 (t) to relax to zero, if the relaxation times for C̃ij(t)
and C̃ijpr3 (t) are comparable, the time for establishment of
Onsager symmetry is the relaxation time for fast variables.
this is generally short compared with the time of actual
measurements, and so non-linear reciprocity should apply
to phenomenological descriptions of measurements.

5 Summary and discussion

The present work follows earlier papers [19,20] which de-
velop (11) as a perturbation approach to the calculation
of T̂ (t, t′). Robertson [1] gave only an expansion of T̂ in
powers of t which is not useful in the steady-state t→∞
limit which is often the goal of transport theory. In [20]
there has been developed the linear O(λ) approximation
to (10). The expression for {∂ηi/∂t}(1) for the case where
ν = 1 and η is the only fast variable has an integral in-
volving T̂0 defined in (12). This integral is evaluated in [20]
via the operator expansion used in (24) plus Fourier trans-
formation, as discussed in (25–27b). This calculation was
extended [19] to include n = 1, 2 in (11), again assuming
just one variable η. One could see that the explicit time-
dependence of phenomenological coefficients disappears as
t→∞. Thus the usual extended thermodynamic formula-
tions [12] which depend on time only through their depen-
dence on the relaxing variables, will hold at long times, at
least when there is just one fast variable.

The present paper extends the previous one [19] by
taking ν > 1, making it possible to cast (10) in the
form (3). The coefficients Lik in (3) can be expanded in
powers of the {λj}. In order to use here the methods of [20]
to calculate L(0)

ik , the lowest order in λ, we have utilized
the variable transformation (21c) and the model (23) for
the time-dependence of C̃ij . This facilitates the calcula-
tion sketched in (25–27b). With this model, we find no
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explicit t-dependence in L
(0)
ik , whilst L(0)

ik = L
(0)
ik so that

reciprocity holds.
Having shown that L(1)

ik = 0, i.e. that the contribution
to Lik linear in λ vanishes, we go on to calculate L

(2)
ik ,

the O(λ2) term. The latter is expressible in terms of in-
tegrals over finite time of correlation functions C̃ij(t) and
C̃ijpr3 (t). These integrals depend explicitly on t and vio-
late reciprocity save in the t→∞ limit. In that limit, the
terms can be regrouped to make L(2)

ik = L
(2)
ki .

It is of interest to compare this result with an earlier
use [18] of the information-theoretic σ(x) (1) as an ap-
proximation for ρ(t) in evolution equations for the {η̇i} de-
rived via Zwanzig Grabert projection operators [17] from
the Liouville equation. The work of Grabert [17] modified
the original formalism of Zwanzig [21], which assumed a
microcanonically, distributed, isolated, closed system, so
that the canonical distribution ρc could hold in equilib-
rium after the Grabert modification. Via projection op-
erators, the Zwanzig-Grabert procedure derives from the
Liouville equation a kinetic equation for a distribution giv-
ing correctly a limited number of moments, as does the
Robertson σ which satisfies the matching conditions (2).
The Zwanzig kinetic equation is exact. However, to ob-
tain a closed set of equations such as (3) for a finite set
of moments corresponding to {F̂i} in the present paper,
one must have an approximate solution (closure) of the
kinetic equation which is a function of the moments of
the finite set. Such a closure can be used to express higher
moments in terms of moments belonging to the set. With-
out such a closure, one can obtain only a hierarchy of
coupled equations for an infinite set of moments. Whilst
Zwanzig with his projection operators may be said to have
pointed the way, Robertson produced a kinetic equation
for σ to which the information-theoretic distribution (1)
and the associated moment equations constitute an exact
solution, and so the moment equations for the variables
{ηi} may be characterized as exact. In the Zwanzig for-
malism, there is no exact closure which can be used to
express higher moments in terms of lower ones, although
the information-theoretic function (1) has been used [18]
to effect an approximate closure. The problem is then that
a prediction via such a procedure of non-linear reciprocity
at longer times may be an artifact of the closure approxi-
mation used.

Although the information-theoretic distribution (1)
is not a solution of the kinetic equation obtained [17]
via Zwanzig-Grabert projection operators, it may still
give a good representation of higher moments in terms
of lower ones. In the work of Grad [22], an ansatz
was substituted into moments equations obtained from
the kinetic theory Boltzmann equation [23] to express
third- or fifth-order tensors in terms of pressure and
heat flux. The Grad ansatz may be regarded [24] as a
linearization of the information-theoretic distribution (1).

This kind of closure works well in linear kinetic theory.
Its use [18] in the Zwanzig-Grabert formalism leads to a
prediction of reciprocity which holds to all orders in λ
provided t is long enough so that the {Lij} depend on the
{λp} but not explicitly on time. the result [18] agrees with
the present paper to O(λ3) which is as far as we go here.

Since the Robertson evolution equations (8) are exact,
one should be able to give an exact proof of the symme-
try of the coefficients {Lik}. It has been possible to show
that the Lik are given in terms of time-correlation func-
tions which are calculable in principle in dense systems
via molecular dynamics. In practice, for analytical results
valid at short times, we need models like (23). Use of these
is equivalent to specifying a model for breaking of time-
reversal symmetry. If methods of Grad [22] or Chapman-
Enskog [23] are used to evaluate the relaxation frequen-
cies {γi}, the present approach provides an extension to
non-linear transport in dilute gases without solving the
non-linear Boltzmann equation.
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